On the Complexity of the Interlace Polynomial

نویسندگان

  • Markus Bläser
  • Christian Hoffmann
چکیده

We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we prove that the interlace polynomial is #P-hard to evaluate at every point of the plane, except at one line, where it is trivially polynomial time computable, and four lines and two points, where the complexity mostly is still open. This solves a problem posed by Arratia, Bollobás and Sorkin (2004). In particular, we observe that three specializations of the two-variable interlace polynomial, the vertex-nullity interlace polynomial, the vertexrank interlace polynomial and the independent set polynomial, are almost everywhere #P-hard to evaluate, too. For the independent set polynomial, our reductions allow us to prove that it is even hard to approximate at every point except at −1 and 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 7 On the Complexity of the Interlace Polynomial ∗ Markus Bläser , Christian Hoffmann

We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we ...

متن کامل

2 00 7 On the Complexity of the Interlace Polynomial ∗

We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we ...

متن کامل

Distance Hereditary Graphs and the Interlace Polynomial

The vertex-nullity interlace polynomial of a graph, described by Arratia, Bollobás and Sorkin in [ABS00] as evolving from questions of DNA sequencing, and extended to a two-variable interlace polynomial by the same authors in [ABS04b], evokes many open questions. These include relations between the interlace polynomial and the Tutte polynomial and the computational complexity of the vertex-null...

متن کامل

A multivariate interlace polynomial

We define a multivariate polynomial that generalizes several interlace polynomials defined by Arratia, Bollobas and Sorkin on the one hand, and Aigner and van der Holst on the other. We follow the route traced by Sokal, who defined a multivariate generalization of Tutte’s polynomial. We also show that bounded portions of our interlace polynomial can be evaluated in polynomial time for graphs of...

متن کامل

Weighted Interlace Polynomials

The interlace polynomials extend in a natural way to invariants of graphs with vertex-weights, and these weighted interlace polynomials have several novel properties. One novel property is a version of the fundamental three-term formula q(G) = q(G − a) + q(G − b) + ((x − 1) − 1)q(G − a − b) that lacks the last term; consequently the use of vertex-weights allows for interlace polynomial calculat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008